

Hospital Universitario Fundación Alcorcón

w Comunidad de Madrid

Tratamiento de la EHGNA en 2019.

XVIII Jornadas de Avances en Hepatología

Conrado Fernández Rodríguez

S. Aparato Digestivo. Hospital Universitario Fundación Alcorcón. Málaga, 23 y 24 de Mayo de 2019.

Sinopsis

- Cambios en el estilo de vida.
- Fármacos disponibles.
- Endoscopia metabólica.
- Fármacos en desarrollo.

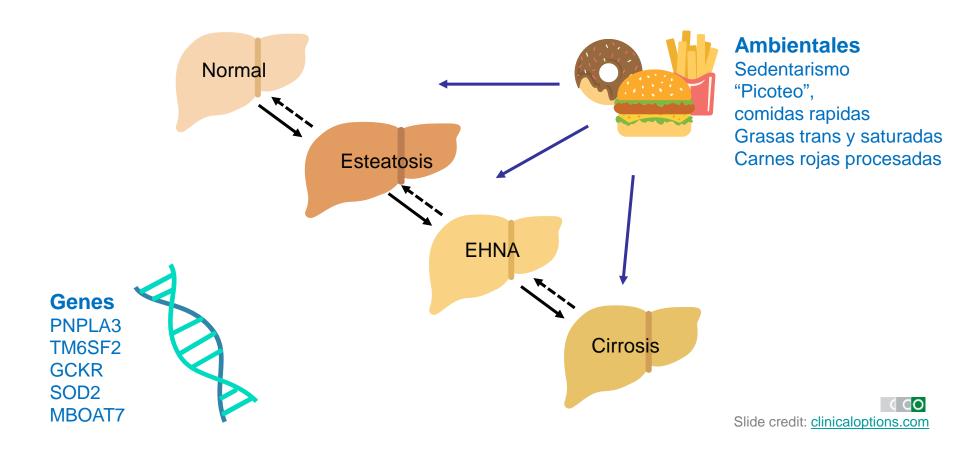
Relationships between liver fat and components of the metabolic syndrome. Liver fat is associated with waist. 7.57 P-Glucose (mmol/I) 140-6.5-Waist (cm) 120-100-60-3.5 100 0.1 10 0.1 1 10 100 D S-HDL chol (mmol/I) S-TG (mmol/I) 0.5 0.1 10 0.1 10 100 100 1 Ε 1107 180-Diastolic BP (mmHg) Systolic BP (mmHg) 50 100

100

10

Liver fat (%)

0.1

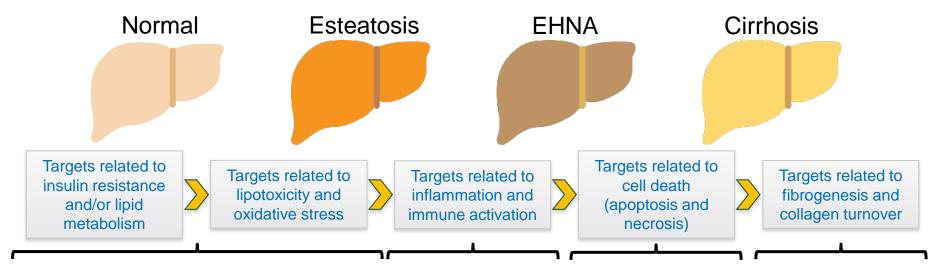

100

10

Liver fat (%)

0.1

EHGNA se produce por una compleja interaccion entre factores geneticos y modificadores ambientales


Objetivos del manejo de la EHGNA con los tratamientos actualmente disponibles

^{1.} Promrat. Hepatology. 2010;51:121. 2. Vilar-Gomez. Gastroenterology. 2015;149:367. 3. Lassailly. Gastroenterology. 2015;149:379.

^{4.} Musso. Hepatology. 2010;52:79. 5. Ratziu. J Hepatol. 2010;53:372. 6. Bril. J Clin Endocrinol Metab. 2017;102:2950. 7. Zhang. Scand J Gastroenterol. 2013;48:78. 8. Chen. Medicine (Baltimore). 2015;94:e1013. 9. Sanyal. NEJM. 2010;362:1675. 10. Cusi. Ann Intern Med. 2016;165:305. 11. Armstrong. Lancet. 2016;387:679. 12 Younossi. EASL 2019. Abstr GS-06

Enfoque a los procesos fisiopatológicos.

PPAR γ GLP-1:

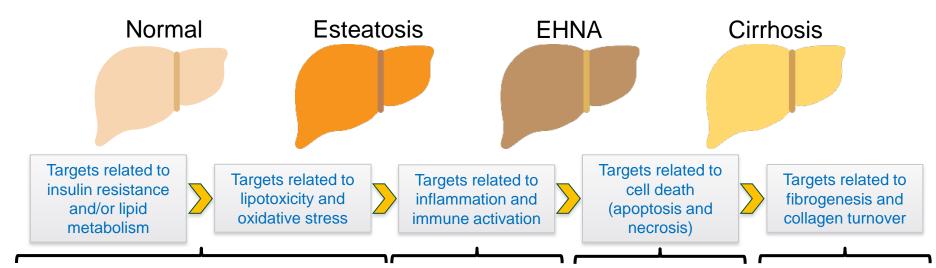
GLP-1: Liraglutide, PPAR $\alpha/\partial/\gamma$: Semaglutide PPAR α/γ : ACC: GS-0976, mTOT: PF-05221304 FXR:

Pioglitazone

PPARα/∂:

SCD1: Aramchol

SGLT1/2: LIK066 TGR5: FGF21: BMS-986036 ASBT: THR-β: MGL-3196 FGF19: Vitamin E Elafibranor IVA337 AOC3: Saroglitazar MSDC-0602K OCA, GS-9674, LJN-452, LMB-763 INT-767, INT-777 Volixibat


NGM282

Cenicriviroc BI 1467335 JKB-121 ASK1: Caspases: Selonsertib LOXL2: Emricasan Galectin: Simtuzumab GR-MD-02

Slide credit: clinicaloptions.com

Enfoque a los procesos fisiopatológicos

PPAR v GLP-1:

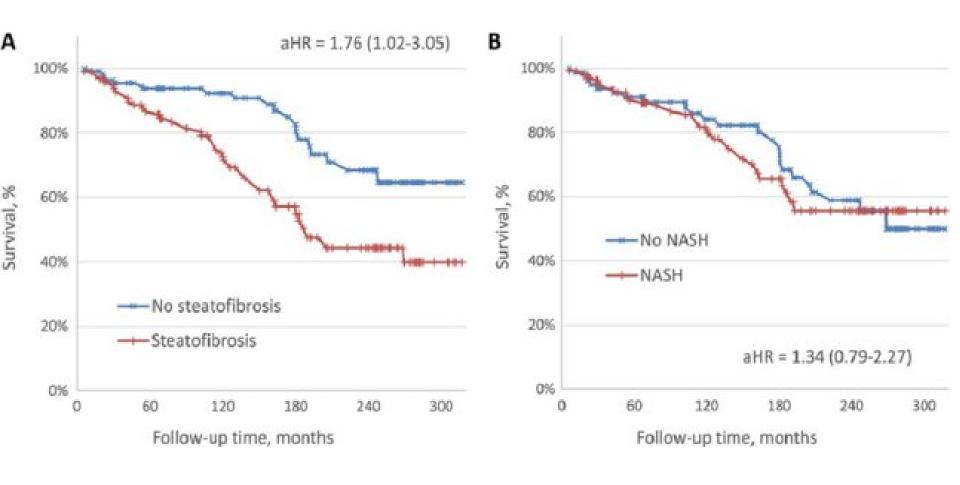
PPARα/∂/y: Liraglutide. Semaglutide PPARα/y: ACC: GS-0976, mTOT: PF-05221304 FXR:

Pioglitazone

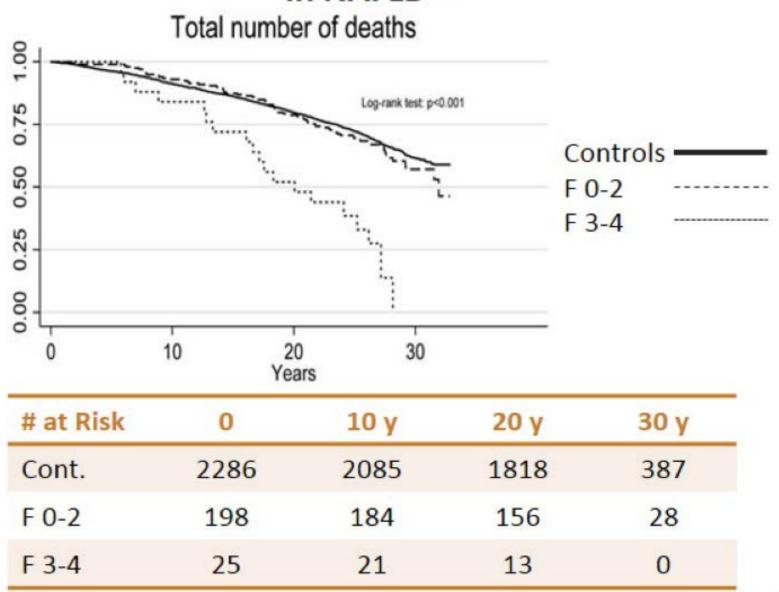
PPARα/∂:

SCD1: Aramchol

SGLT1/2: LIK066 TGR5: FGF21: BMS-986036 ASBT: THR-β: MGL-3196 FGF19: Elafibranor CCR2/5: **IVA337** AOC3: Saroglitazar TLR4: MSDC-0602K OCA, GS-9674, LJN-452, LMB-763 INT-767, INT-777 Volixibat


NGM282 Vitamin E Cenicriviroc BI 1467335 JKB-121

ASK1: Caspases: Selonsertib LOXL2: Emricasan Galectin:


Simtuzumab GR-MD-02

EHNA: La importancia pronóstica de la fibrosis.

Strongest predictor for disease-specific mortality in NAFLD^[b]

FDA: Los objetivos de mejoría histológica predicen beneficio clinico.

NASH Resolution

 Resolution of steatohepatitis on overall histopathologic reading

and

No worsening of liver fibrosis

Fibrosis Improvement

Improvement ≥ 1 fibrosis stage

and

No worsening of steatohepatitis

Porcentaje de reducción ponderal asociado a mejoría histológica en la EHGNA.

Perdida de peso	Resultado en pacientes que pierden peso	Resultado en los que mantienen la perdida a 1 año
≥10% [1]	Regresión de la fibrosis (45%)	<10%
≥ 7% [1]	NASH resolution (64% to 90% of patients)*	18%
≥ 5% ^[1-3]	Ballooning/inflammation improvement (41% to 100% of patients)*	30%
≥ 3% [1-4]	Steatosis improvement (35% to 100% of patients*)	No publicado

^{1.} Vilar-Gomez. Gastroenterology. 2015;149:367. 2. Promrat. Hepatology. 2010;51:121. 3. Harrison. Hepatology. 2009;49:80. 4. Wong. J Hepatol. 2013;59:536.

Table 4. Factors associated with non-alcoholic steatohepatitis in overweight patients with NAFLD

	Univariate analysis		Multivariate analysis	
	OR (95% CI)	p-value	OR (95% CI)	p value
Age (years)	1.067 (1.019-1.117)	0.005		
Male sex	0.250 (0.073-0.855)	0.027		
Body mass index (kg/m²)	1.184 (0.942-1.488)	ns		
Waist circumference, cm	1.018 (0.955-1.084)	ns		
Systolic blood pressure, mmHg	1.073 (1.032-1.116)	0.001		
Diastolic blood pressure, mmHg	1.073 (1.032-1.115)	0.001		
Total cholesterol, mg/dl	0.997 (0.987-1.007)	ns		
Triglycerides, mg/dl	1.005 (0.999-1.012)	ns		
ALT, IU/I	1.008 (0.998-1.019)	ns		
AST, IU/I	1.016 (0.998-1.035)	ns		
GGT, IU/I	0.994 (0.986-1.003)	ns		
Fasting plasma glucose, mg/dl	1.038 (1.004-1.074)	0.03		
HOMA-IR	2.036 (1.305-3.176)	0.002		
LDL-chol, mg/dl	1.001 (0.987-1.015)	ns		
HDL-chol, mg/dl	0.975 (0.939-1.013)	ns		
Platelet count, ×10³/μl	0.992 (0.984-1.001)	ns		
PNPLA3 G carrier	1.810 (0.511-6.403)	ns		
TNFA-α A carrier	0.483 (0.105-2.220)	ns		
History of diabetes	8.571 (0.937-78.405)	0.057		
History of hypertension	8.156 (2.601-15.577)	0.001		
Metabolic syndrome	0.201 (0.068-0.598)	0.004		
MEDAS	0.667 (0.501-0.890)	0.006	0.7 (0.5-0.8)	0.002

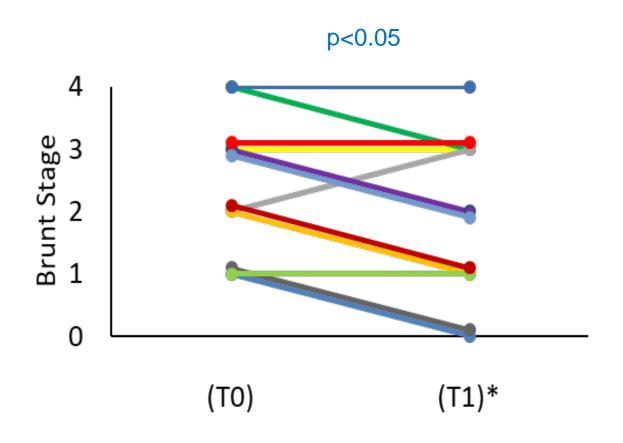
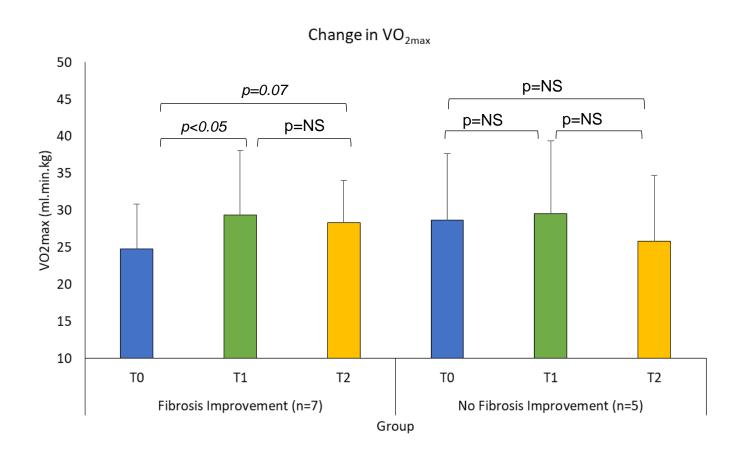

ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: garmma-glutamyltransferase; HOMA-IR: homeostasis model assessment of insulin resistance; LDL-chol: low-density lipoprotein cholesterol; HD-chol: high-density lipoprotein cholesterol; PNPLA3: patatin-like phospholipase domain containing protein 3; TNF-α: tumor necrosis factor-alpha.

Table 5. Factors associated with liver fibrosis in overweight patients with NAFLD

	Univariate analysis		Multivariate analysis	
	OR (95% CI)	p-value	OR (95% CI)	p value
Age (years)	1.049 (1.005-1.094)	0.028		
Male sex	4 (1.169-13.683)	0.027		
Body mass index (kg/m²)	0.951 (0.767-1.179)	ns		
Waist circumference, cm	0.97 (0.91-1.035)	ns		
Systolic blood pressure (mmHg)	1.029 (0.999-1.060)	ns		
Diastolic blood pressure (mmHg)	1.018 (0.988-1.049)	ns		
Creatinine, mg/dl	0.157 (0.006-3.874)	ns		
Total bilirubin, mg/dl	1.229 (0.657-2.297)	ns		
ALT, IU/I	1.016 (1.003-1.030)	0.019		
AST, IU/I	1.031 (1.004-1.059)	0.022		
GGT, IU/I	1.002 (0.994-1.010)	ns		
Fasting plasma glucose, mg/dl	1.022 (0.994-1.049)	ns		
HOMA-IR	1.423 (1.057-1.916)	0.020	1.8 (1.1-2.8)	0.007
Total cholesterol, mg/dl	0.992 (0.981-1.002)	ns		
LDL-chol, mg/dl	0.996 (0.982-1.010)	ns		
HDL-chol, mg/dl	0.978 (0.942-1.015)	ns		
Triglycerides, mg/dl	1.001 (0.995-1.007)	ns		
Platelet count, ×10³/µl	0.996 (0.988-1.004)	ns		
PNPLA3 rs 738409 carrier	0.857 (0.263-2.792)	ns		
TNF-a	0.179 (0.032-0.996)	0.049		
History of diabetes	8.571 (0.937-18.405)	ns		
History of hypertension	3.223 (1.128-9.21)	0.029		
Metabolic syndrome	0.632 (0.227-1.761)	ns		
MEDAS	0.695 (0.528-0.915)	0.010	0.7 (0.5-0.8)	0.001

ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: gamma-glutamy/transferase; HOMA-IR: homeostasis model assessment of insulin resistance; LDL: low-density lipoprotein; HDL: high-density lipoprotein; PNPLA3: patatin-like phospholipase domain containing protein 3; TNF-a: tumor necrosis factor-alpha.

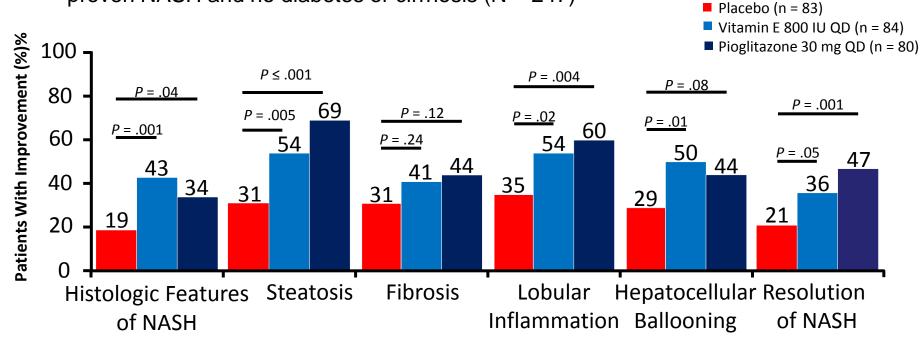

12 semanas de ejercicio aeróbico en 12 pacientes sin reducción significativa de peso

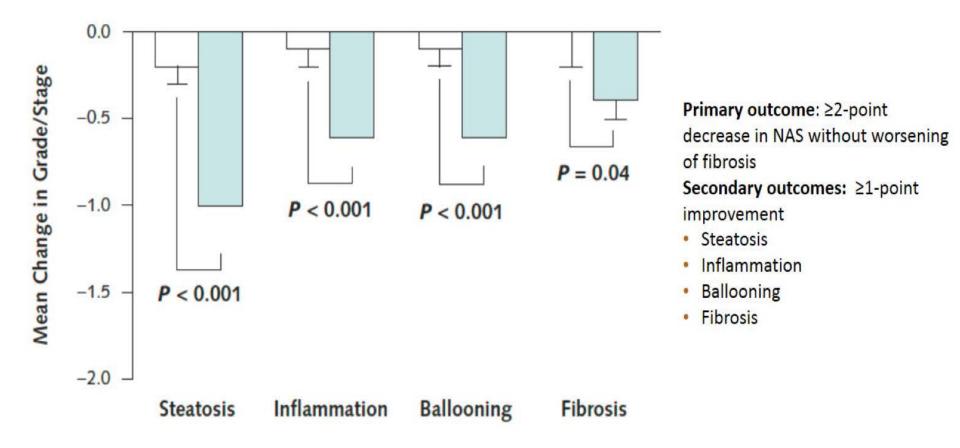

O'Gorman P et al ILC 2019, PS-105

12 semanas de ejercicio aeróbico mejoro el perímetro abdominal y la histología, pese a que solo 3 de 12 redujeron ≥ 5% el peso

Change in waist circumference

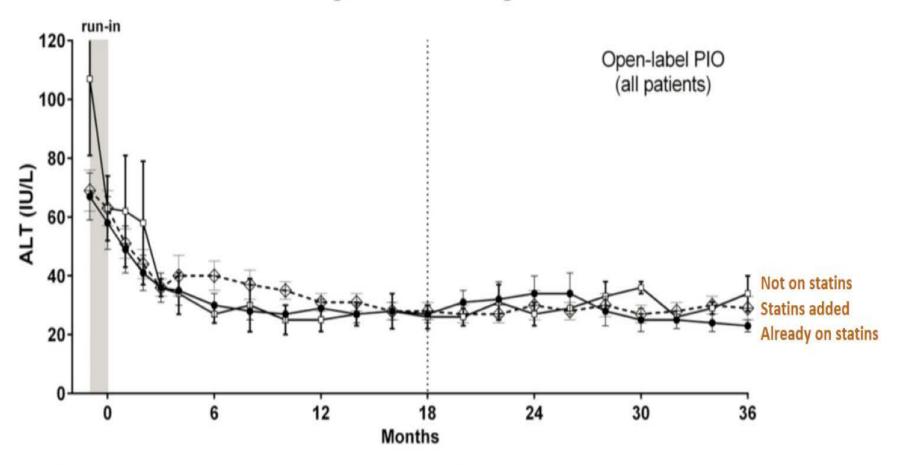
12 semanas de ejercicio aeróbico mejoro el perímetro abdominal y la histología, pese a que solo 3 de 12 redujeron ≥ 5% el peso




O'Gorman P et al ILC 2019, PS-105

PIVENS: 96-Wk Results of Pioglitazone and Vitamin E in Patients With NASH

• Double-blind, placebo-controlled, randomized phase III study in adults with biopsyproven NASH and no diabetes or cirrhosis (N = 247)



Note: In patients with paired biopsies; white bars represent placebo. Blue bars represent pioglitazone.

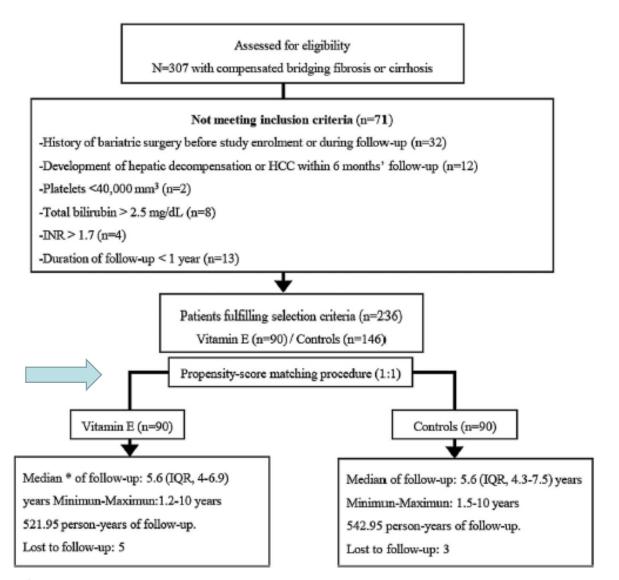
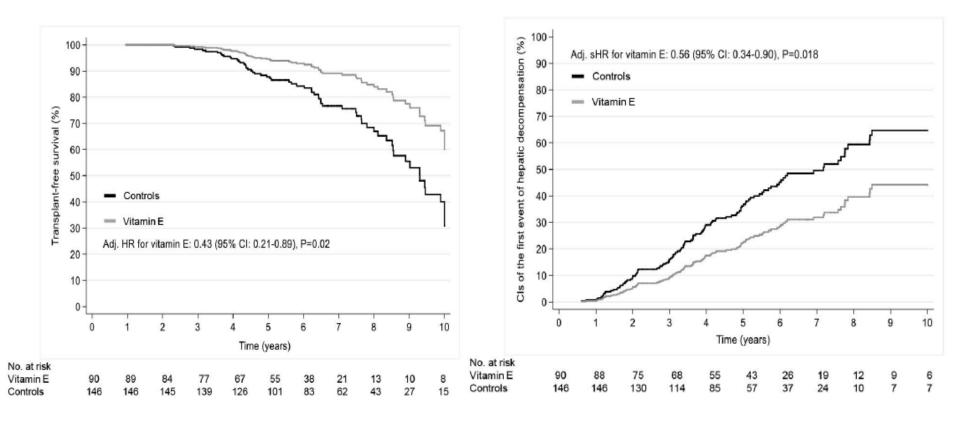
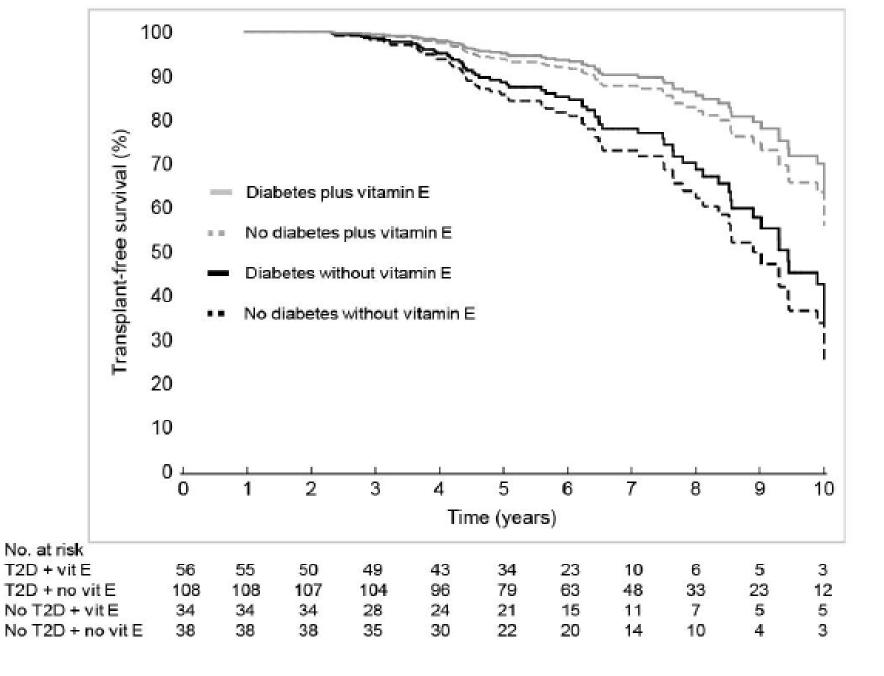
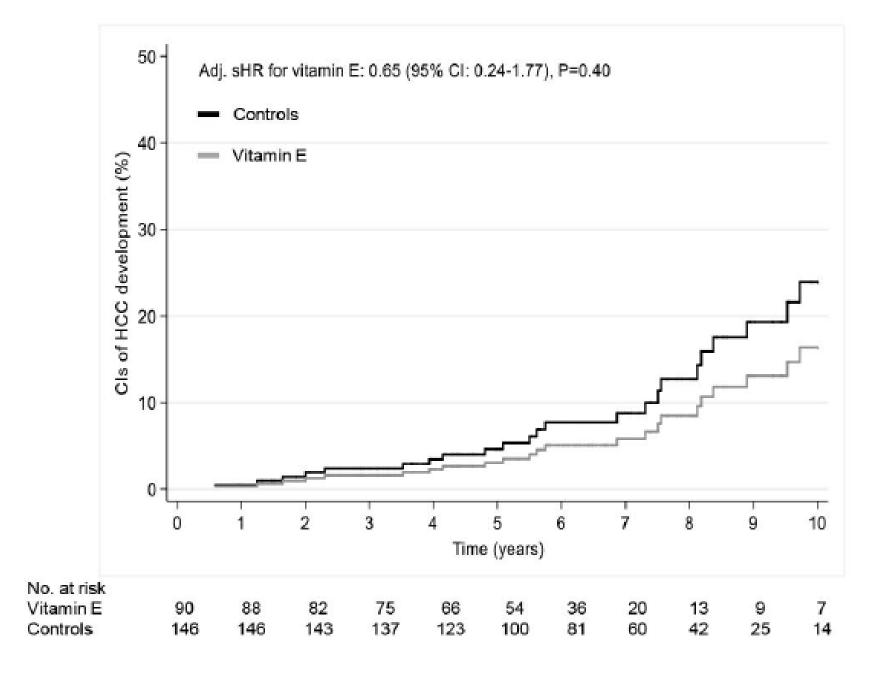
From Annals of Internal Medicine, Cusi K, et al., Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus, 165., 305-315. Copyright © 2016 American College of Physicians. All Rights Reserved. Reprinted with the permission of American College of Physicians, Inc.

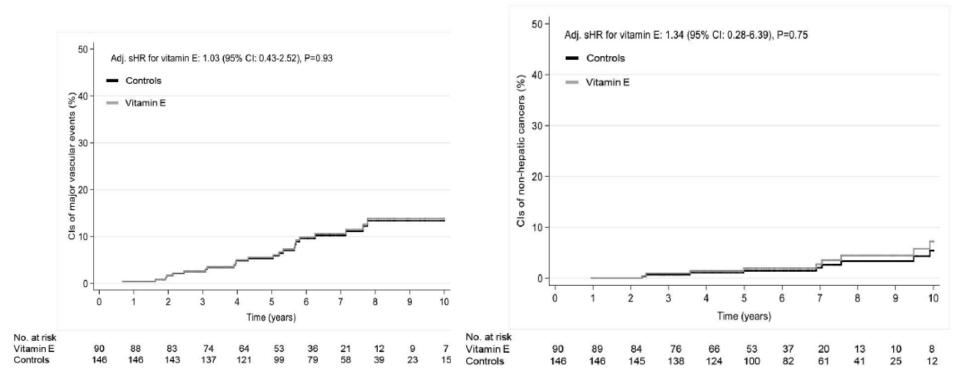
Efecto de la pioglitazona a los 18 meses de tratamiento en pacientes con DM2 o prediabetes.

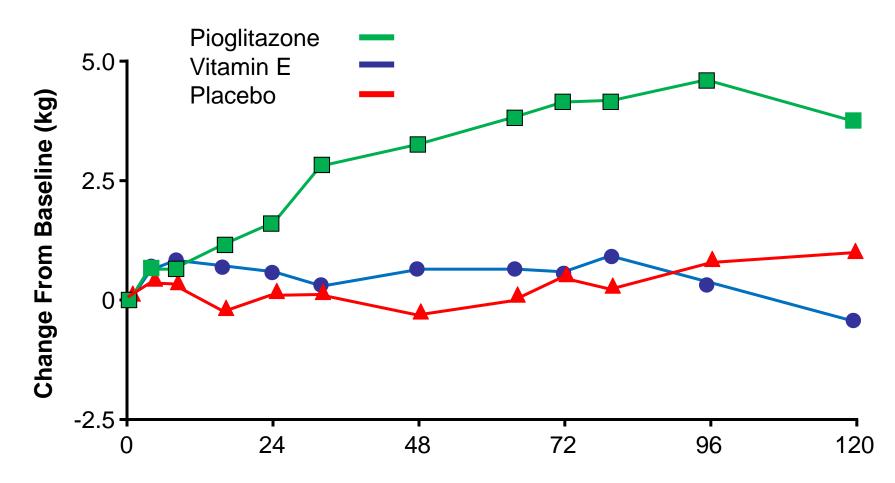
Patients on Pioglitazone During the PIO Trial

Reprinted from *J Clin Endo Metab*, 102, Bril F, et al. Liver Safety of Statins in Prediabetes or T2DM and Nonalcoholic Steatohepatitis: Post-hoc Analysis of a Randomized Trial, 2950-2961, Copyright 2017, with permission from Elsevier.

Vitamina E


FIG. 1. Flowchart of patients through the study cohort. *Median follow-up after vitamin E was initiated.


Vilar-Gomez E et al Hepatology. 2018 Dec 1. doi: 10.1002/hep.30368. [Epub ahead of print]

PIVENS: Change in Weight by Treatment

Tolerancia y seguridad de los tratamientos recomendados (Fuera de ficha tecnica)

Vitamin E (800 IU/day)

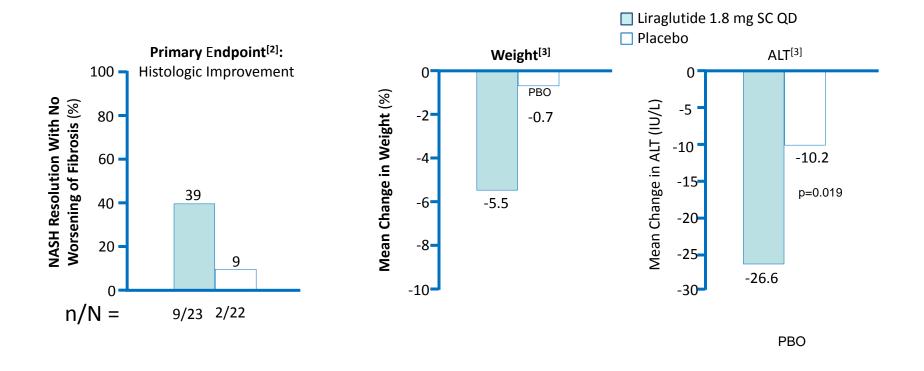
- Possible all-cause mortality risk at > 800 IU/day^[1]
- Increased hemorrhagic stroke risk^[2]
 - Also shows reduced ischemic stroke risk
- Increased prostate carcinoma risk (HR vs placebo: 1.17; 99% CI: 1.004-1.36; P = .008)^[3]

Pioglitazone

- Edema, weight gain (~ 2-3 kg over 2-4 yrs)^[4]
- Risk of osteoporosis in women^[5]
- Equivocal bladder cancer risk
 - Increased in some studies^[6]
 - No association in most studies^[7,8]

Use of these agents should be personalized for selected patients with histologically confirmed NASH after careful consideration of risk/benefit ratio

^{1.} Miller. Ann Intern Med. 2005;142:37. 2. Schurks. BMJ. 2010;341:c5702. 3. Klein. JAMA. 2011;306:1549.


^{4.} Bril. Diabetes Care. 2017;40:419. 5. Yau. Curr Diab Rep. 2013;13:329. 6. Tuccori. BMJ. 2016;352:i1541.

^{7.} Lewis. JAMA. 2015;314:265. 8. Davidson. Diabetes Complications. 2016;30:981.

LEAN: 48-Wk Results of Liraglutide vs Placebo in Overweight Patients With NASH

Randomized, double-blind phase II study^[1]

Semaglutide also associated with ALT reduction and weight loss in nondiabetic adults with NASH and obesity^[3]

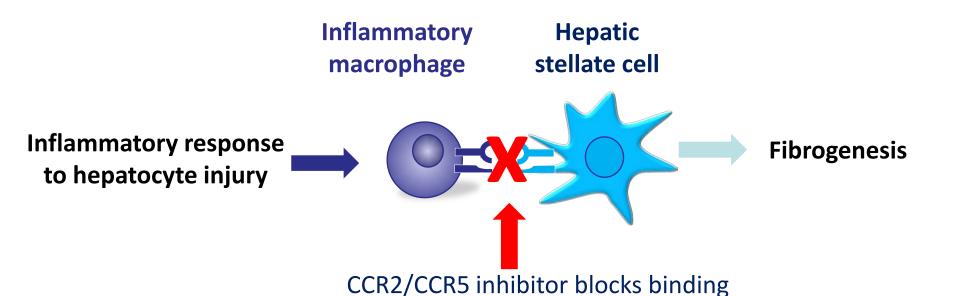
NASH Treatments Currently in Phase III Investigations

Agent	МоА	Trial	N	Primary Endpoint(s)	Time Point
Cenicriviroc	CCR2/5 antagonist	AURORA ^[1]	2000	≥ 1 stage fibrosis improvement with no NASH worsening	12 mos
Elafibranor	PPARα/σ agonist	RESOLVE-IT ^[2]	2000	Resolution of NASH with no fibrosis worsening	72 wks
Obeticholic acid	FXR agonist	REGENERATE ^[3]	2370	≥ 1 stage fibrosis improvement with no NASH worsening; resolution of NASH with no fibrosis worsening	18 mos
		REVERSE ^[4]	540	≥ 1 stage fibrosis improvement with no NASH worsening	12 mos
Selonsertib	ASK1 inhibitor	STELLAR 3 ^[5]	808	≥ 1 stage fibrosis improvement with no NASH worsening; event-free survival	48 wks
		STELLAR 4 ^[6]	883	NASH with compensated cirrhosis	240 wks

Phase III/IV studies use adaptive design

- Histologic endpoints for Subpart H conditional approval
 - Clinical endpoints for full approval

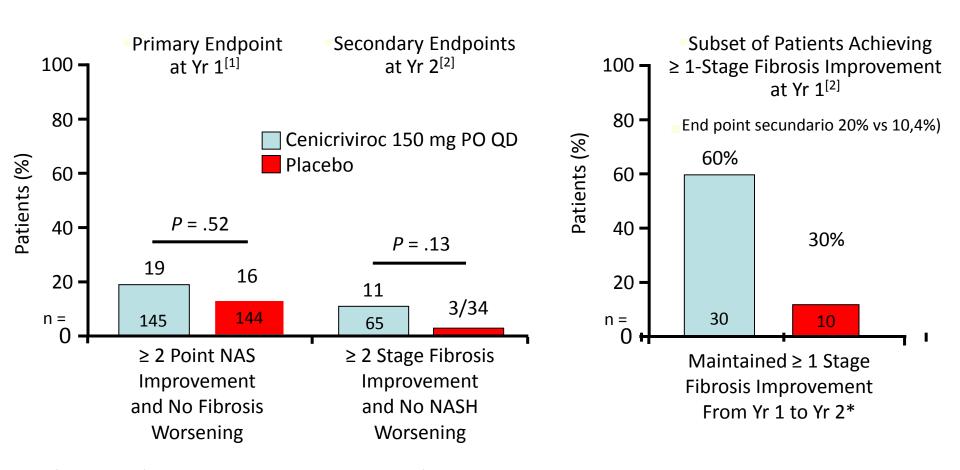
NASH Treatments Currently in Phase III Investigations


Agent	МоА	Trial	N	Primary Endpoint(s)	Time Point
Cenicriviroc	CCR2/5 antagonist	AURORA ^[1]	2000	≥ 1 stage fibrosis improvement with no NASH worsening	12 mos
Elafibranor	PPARα/σ agonist	RESOLVE-IT ^[2]	2000	Resolution of NASH with no fibrosis worsening	72 wks
Obeticholic acid	FXR agonist	REGENERATE ^[3]	2370	≥ 1 stage fibrosis improvement with no NASH worsening; resolution of NASH with no fibrosis worsening	18 mos
		REVERSE ^[4]	540	≥ 1 stage fibrosis improvement with no NASH worsening	12 mos
Selonsertib	ASK1 inhibitor	STELLAR 3 ^[5]	808	≥ 1 stage fibrosis improvement with no NASH worsening; event-free survival	48 wks
		STELLAR 4 ^[6]	883	NASH with compensated cirrhosis	240 wks

Phase III/IV studies use adaptive design

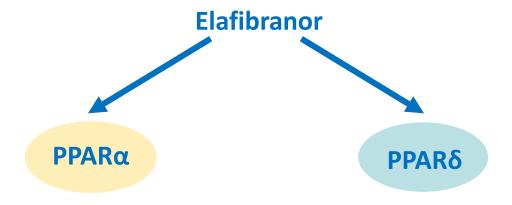
- Histologic endpoints for Subpart H conditional approval
 - Clinical endpoints for full approval

Cenicriviroc: CCR2/CCR5 Inhibitor



of inflammatory macrophage to hepatic stellate cell

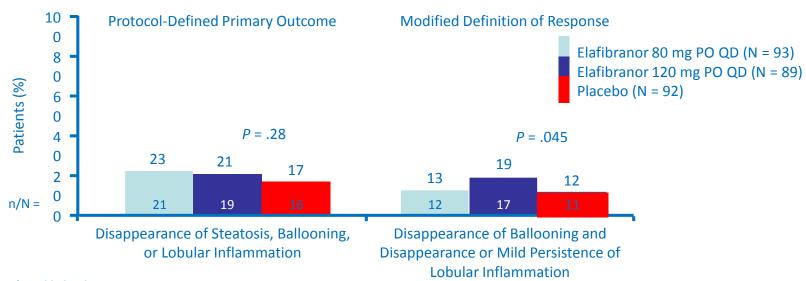
CENTAUR: Cenicriviroc vs Placebo in Patients With NASH at Yr 1 and 2


Randomized, double-blind, phase IIb study in pts with NASH, NAS \geq 4 and F1-F3 fibrosis (N = 289)^[1]

^{1.} Friedman. Hepatology. 2018;67:1754. 2. Ratziu. EASL 2018. Abstr GS-002.

Elafibranor: PPARα/δ Agonist

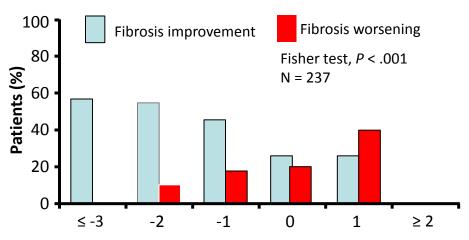
- Fatty acid oxidation
- TG lowering
- HDL raising
- Inflammation


- Lipoprotein metabolism
- Glucose homeostasis
- Energy metabolism
- Inflammation

Liver

GOLDEN-505: Elafibranor vs Placebo in Patients With NASH at Wk 52

- Double-blind, placebo-controlled, randomized, international phase IIb study in patients with noncirrhotic NASH (N = 276)
 - Primary endpoint: resolution of NASH without fibrosis worsening at Wk 52

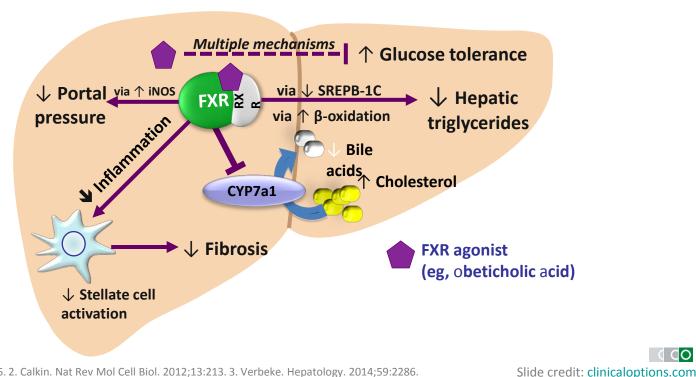


Ratziu. Gastroenterology. 2016;150:1147.

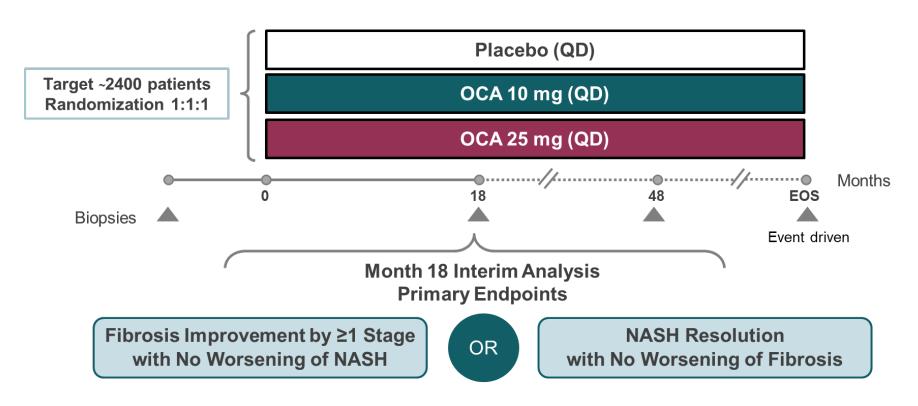
GOLDEN-505: Correlation Between NASH Histology and Fibrosis at Wk 52, Tolerability

- Changes in hepatocyte ballooning and lobular inflammation correlated with changes in fibrosis stage (P = .04 and P < .001, respectively)^[1]
 - Changes in steatosis did not correlate with changes in fibrosis stage

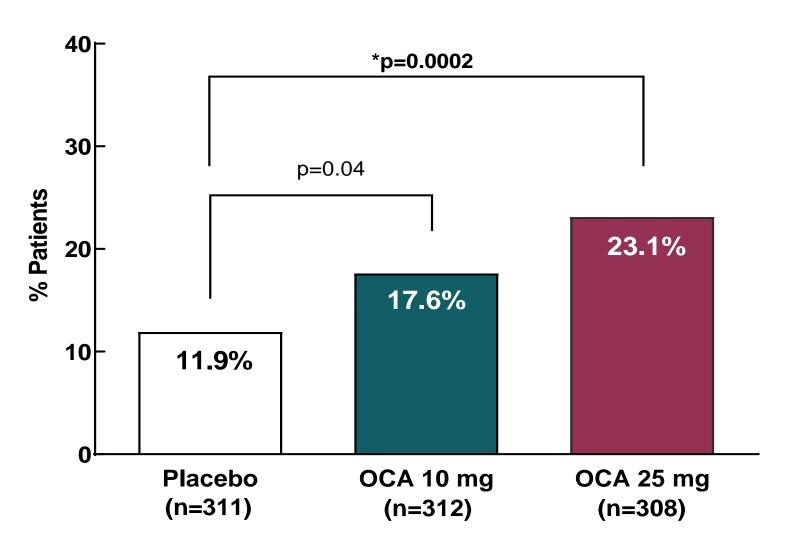
Changes in Lobular Inflammation Plus Ballooning Scores


- Liver enzymes, lipids, glucose profiles, and markers of systemic inflammation significantly lower in elafibranor 120-mg group vs the placebo group^[2]
- Elafibranor well tolerated; no weight gain or cardiac events^[2]
- Mild, reversible increase in serum creatinine (effect size vs placebo: increase of 4.31 ± 1.19 mmol/L; P < .001)^[2]

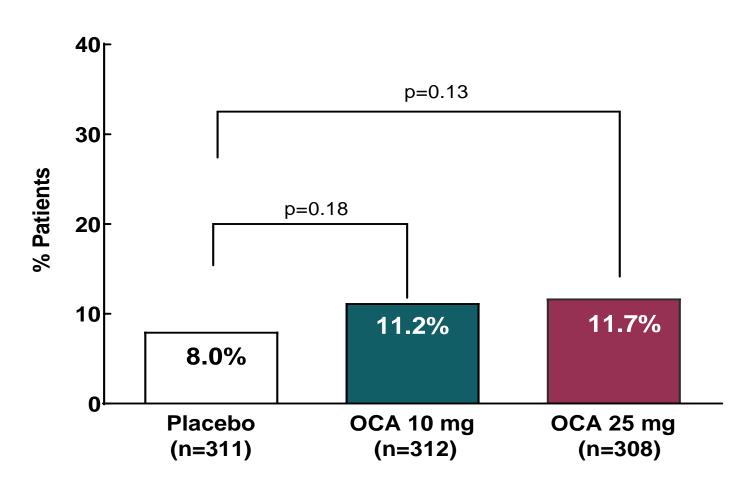
^{1.} Ratziu. AASLD 2016. Abstr LB-37. 2. Ratziu. Gastroenterology. 2016;150:1147.


Obeticholic Acid: FXR Agonist

FXR central to multiple key pathways in animal models

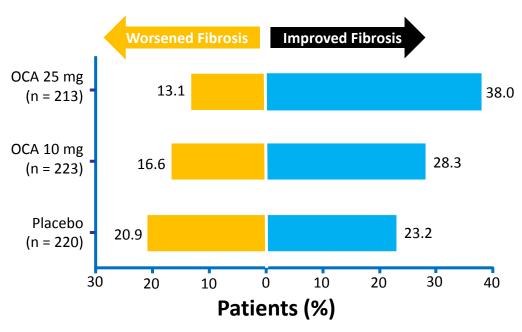


REGENERATE: A phase 3 international, randomized, placebo-controlled study of obeticholic acid treatment for NASH



Study success was defined as achievement of one of these two primary endpoints

Primary endpoint (ITT): fibrosis improvement by ≥1 stage with no worsening of NASH


Primary endpoint (ITT): NASH resolution with no worsening of fibrosis

REGENERATE Secondary Endpoints: Changes in Fibrosis

Fibrosis Regression/Progression by ≥ 1 Stage (per Protocol With Postbaseline Biopsy)

Younossi. EASL 2019. Abstr GS-06.

 OCA also associated with improvement in fibrosis staging, NAS parameters, ALT, AST, GGT

REGENERATE: Seguridad.

- Pruritus incidence peaked within first 3 mos before declining
- In OCA 25 mg arm, 9% discontinued due to pruritus, mostly protocol driven
 - Rates comparable between arms
- Cardiovascular AE rates ≤ 2% in all arms

- LDL increased and HDL decreased early with OCA; recovered with clinical management
- Hepatic TEAE rates similar across arms
 - Hepatic serious AEs in < 1%, numerically more cases in OCA 25 mg arm
 - Low rates of cholelithiasis, cholecystitis AEs

TEAEs Occurring in ≥ 10% of Patients in Any Arm, r	1
(%)	

Pruritus

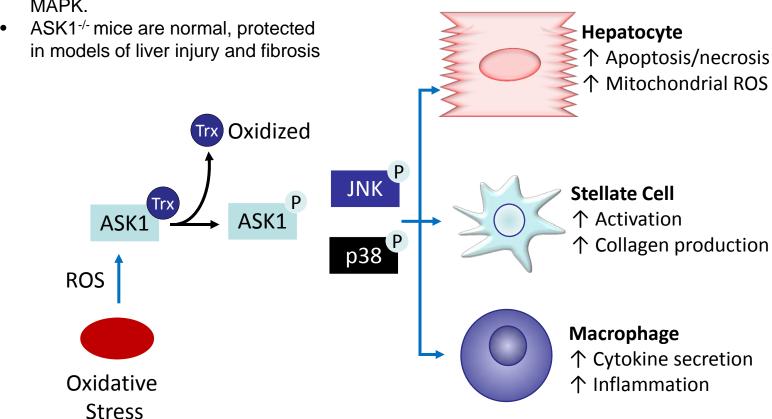
LDL increased

Nausea

Fatigue

Constipation

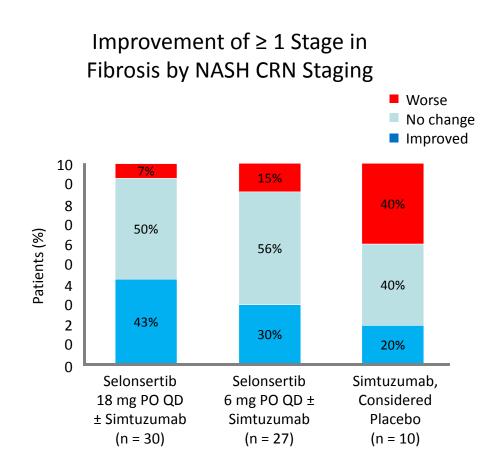
Abdominal pain


Diarrhea

OCA 10 mg (n = 653)	OCA 25 mg (n = 658)	Placebo (n = 657)
183 (28)	336 (51)	123 (19)
109 (17)	115 (17)	47 (7)
72 (11)	83 (13)	77 (12)
78 (12)	71 (11)	88 (13)
65 (10)	70 (11)	36 (5)
65 (10)	67 (10)	62 (9)
44 (7)	49 (7)	79 (12)

Selonsertib: ASK1 Inhibitor

ASK1: Apoptosis Signal-Regulating Kinase


Activated by oxidative stress.
 Promotes cell death, fibrosis, and inflammation via JNK and p38 MAPK.

Selonsertib: ASK1 Inhibitor in Patients With NASH at Wk 24

- Open-label phase II study in patients with biopsy-proven NASH, NAS ≥ 5, F2-F3 fibrosis (N = 72)
- Improvement in fibrosis associated with:
 - Reduction in liver stiffness by MR
 - Reduction in collagen content and lobular inflammation on liver biopsy
 - Improvements in serum biomarkers of apoptosis and necrosis

Double-blind, placebo-controlled, randomized trial of emricasan in subjects with NASH cirrhosis and severe portal hypertension

BACKGROUND & AIMS

- Severe PH is a key driver of decompensation and worse clinical outcomes
 - Lowering HVPG associated with clinical benefit
- Aim: To establish if emricasan reduces HVPG in cirrhosis patients with HVPG ≥12 mmHg (open-label study)

METHODS

- Patients with NASH cirrhosis and BL HVPG
 ≥12 mmHg randomized 1:1:1:1 to
 emricasan 5, 25, 50 mg or placebo orally
 twice daily for 48 wks
 - Primary endpoint: 1 follow-up HVPG at Wk24
 - All HVPG tracings evaluated by central reader

RESULTS

- 263 subjects randomized (59 US/EU sites)
 - 13 discontinued prior to Wk 24
 - 7 had no/unevaluable Wk 24 HVPG
- Treatment groups were generally balanced

Population characteristics	%	Population characteristics	Mean (SD)
Sex, female	57	Age, years	60.8 (8.8)
Race, Caucasian	91	BMI, kg/m ²	35.3 (6.9)
Type 2 diabetes	84	MELD	9.0 (2.5)
Compensated	76	HVPG, mmHg	17.0 (3.6)
Early decompensated	24		

Double-blind, placebo-controlled, randomized trial of emricasan in subjects with NASH cirrhosis and severe portal hypertension

RESULTS

- HVPG was reduced in subsets of patients (*Table*)*
- TEAEs: 81.6% combined emricasan vs. 82.1% pbo
- SAEs: 17.9% emricasan vs.11.9% pbo
- No imbalance in routine labs, vitals, ECGs

Least squares mean change [†] from baseline at Wk 24	Emricasan 5 mg N=65	Emricasan 25 mg N=65	Emricasan 50 mg N=66	Placebo N=67
HVPG (overall)	-0.6; p=0.96	-0.8; p=0.79	-1.0; p=0.65	-0.4
HVPG (compensated)	-0.8; p=0.10	-0.9; p=0.09	-0.5; p=0.27	+0.2
HVPG (compensated HVPG ≥16 mmHg) [‡]	-1.6; p=0.01	-1.7; p<0.01	-1.5; p=0.02	+0.5
Caspase 3/7	-4%; p=0.90	-31%; p<0.01	-37%; p<0.01	-4%
cCK18	-27%; p<0.01	-32%; p<0.01	-34%; p<0.01	-13%
ALT	-8; p<0.01	-8; p<0.01	-6; p=0.02	-3
AST	-6; p<0.01	-7; p<0.01	-3; p=0.18	-1

CONCLUSIONS Primary endpoint was not met. Data suggest that emricasan for 24 wks reduced portal pressure in compensated NASH cirrhosis patients with severe PH (especially higher BL HVPG). Decreases in transaminases suggest an intrahepatic effect with reduction of liver injury. Clinical outcomes and full safety data will be evaluated after the 48-wk study

^{*}p-values (descriptive) for difference in least squares mean vs. placebo;

[†]Adjusting for baseline value, cirrhosis status, and/or NSBB use (multiple imputation for overall, observed case for rest);

NASH Clinical Trial Endpoints in Early Phase II Development

ALT

- 10 U/L reduction associated with histologic improvement or resolution of NASH^[1]
- ≥ 17 U/L reduction predicts histologic response^[2]

Liver Fat Fraction (MRI-PDFF)

- ≥ 5% absolute reduction associated with improvement in steatosis^[3]
- ≥ 30% relative reduction associated with improvement in NAFLD activity score without fibrosis worsening^[4]

ALT: Correlation With Histologic Response

Logistic regression model of factors associated with histologic response in a 72-wk study of obeticholic acid in adults with NASH (N = 283)

Histologic response: decrease in NAS by ≥ 2 points with no fibrosis worsening

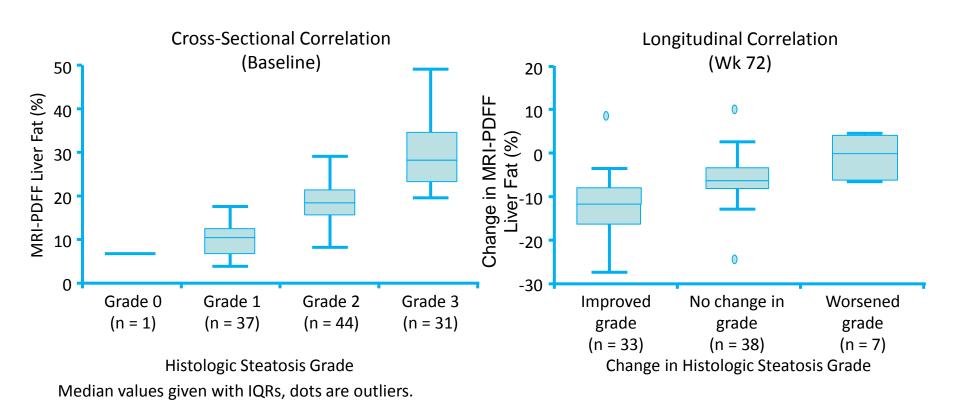
ALT Decrease ≥ 17 U/L as Predictor of Histologic Response

ALT Decrease at Wk 24 (≥ 17 U/L vs < 17 U/L)

Odds Ratio (95% CI)

NASH Objetivos adaptados para ensayos clinicos.

Phase III


- NASH resolution with no worsening of fibrosis
- Fibrosis improvement with no worsening of NASH

Phase II

- ALT reduction
- Liver fat reduction by MRI-PDFF

Liver Fat by MRI-PDFF: Correlation With Steatosis Grade at Baseline and After Treatment

Endoscopic duodenal mucosal resurfacing improves hepatic fat fraction, glycaemic and lipid profiles in type 2 diabetes

BACKGROUND & AIMS

Putative role of duodenal mucosal hyperplasia in metabolic disease

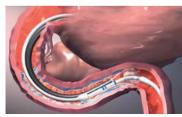
Nutrient-induced stem cell division¹

Duodenal endocrine hyperactivity²

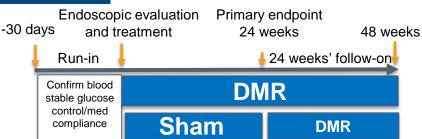
High fat + sugar diets

Duodenal mucosal hyperplasia

Insulin resistance syndrome

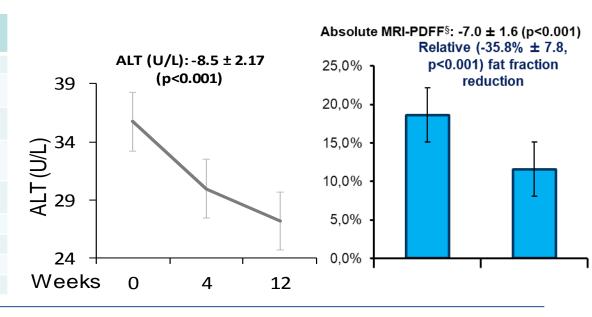

Can reversal of hyperplasia alone reverse/ameliorate insulin resistance?

Aim: Evaluate effect of DMR on glycaemia, hepatic fat, and mechanistic endpoints


DIVIR: REVITA single catheter

METHODS

- Revita-2 (NCT02879383): multicentre study with early open-label cohort (training purposes, n=24) and randomized double-blind cohort (n=108)
 - 17/20 (85%) open-label subjects with MRI-PDFF data had excess baseline liver fat (>5%)
- Inclusion criteria: HbA1c 7.5–10%; 24≤BMI≤40;
 ≥1 oral medications
- DMR procedure: single catheter


Endoscopic duodenal mucosal resurfacing improves hepatic fat fraction, glycaemic and lipid profiles in type 2 diabetes

Baseline and 12-week metabolic and glycaemic values*

RESULTADOS

			P-	
Indices	Baseline	12 weeks	value	
HbA1c (%)	8.4 ± 0.2	7.4 ± 0.2	0.001	
Fasting plasma insulin† (uIU/ml)	13.6 ± 1.8	9.8 ± 1.1	<0.05	
Fasting C- peptide (ng/ml)	3.2 ± 0.3	2.7 ± 0.2	0.01	
Fasting TGs (mg/dl)	209.0 ± 32.0	150.0 ± 20.0	<0.01	
Fasting HDL (mg/dl)	45.7 ± 2.8	49.2 ± 3.2	<0.05	
Ferritin [‡] (ng/ml)	90.8 ± 16.6	69.4 ± 15.5	< 0.01	
ALT (U/L)	35.8 ± 4.1	27.2 ± 2.4	< 0.01	
HOMA-IR†	6.0 ± 0.7	4.1 ± 0.6	0.01	
Body weight (kg)	89.7 ± 1.9	86.6 ± 2.0	<0.01	

Revita-2 open-label cohort: change over 12 weeks in ALT and liver MRI-PDFF*

CONCLUSIONS DMR was successfully implemented in T2D subjects with a favourable safety/ tolerability profile (median procedure time = 45 minutes), and is a promising potential treatment for T2D and NAFLD/NASH. Randomized cohort data will follow later this year

Resumen

- La reduccion ponderal y cambios de estilo de vida son la piedra angular del manejo de la EHGNA
- Vitamina E, liraglutide y Pioglitazona ofrecen resultados positivos.
 Se desconoce su seguridad a largo plazo.
- Multiples dianas farmacologicas en desarrollo
- Los 2 objetivos histologicos para los ensayos fase III son:
 - Resolución del NASH sin empeoramiento de la fibrosis
 - Mejoria de la fibrosis sin empeoramiento del NASH
- Los ensayos clinicos de diseño "adaptado" (Fase 2) aportan la oportunidad de acelerar el desarrollo.
- El OCA es el primero de los ensayos Fase III en ofrecer resultados positivos.